Inhaltsverzeichnis

MerkurVenusErdeMarsJupiterSaturnUranusNeptun

Jupiter

mittlere Anomalien

Tabelle 1
$M_5 =$ $20\overset{\circ}{.}351304 + 2880\overset{\circ}{.}0 \cdot T + 154\overset{\circ}{.}906668 \cdot T$
$M_6 =$ $317\overset{\circ}{.}875212 + 1080\overset{\circ}{.}0 \cdot T + 142\overset{\circ}{.}116768 \cdot T$
$M_7 =$ $142\overset{\circ}{.}903332 + 360\overset{\circ}{.}0 \cdot T + 68\overset{\circ}{.}493096 \cdot T$

Tabellen

\[\begin{align} dl &= \sum_{n=1}^{7} T^{t_n} (a_n \cos(p_n \ M_p + s_n \ M_s) + b_n \sin(p_n \ M_p + s_n \ M_s)) \\ db &= \sum_{n=1}^{7} T^{t_n} (c_n \cos(p_n \ M_p + s_n \ M_s) + d_n \sin(p_n \ M_p + s_n \ M_s)) \\ dr &= \sum_{n=1}^{7} T^{t_n} (e_n \cos(p_n \ M_p + s_n \ M_s) + f_n \sin(p_n \ M_p + s_n \ M_s)) \end{align}\tag{1}\]

Tabelle 2: Keplerterme
n $a_n['']$ $b_n['']$ $c_n['']$ $d_n['']$ $e_n['']$ $f_n['']$ $p_n$ $s_n$ $t_n$
$01$ $-113.1$ $19998.6$ $-4670.7$ $288.9$ $-25208.2$ $-142.2$ $1$ $0$ $0$
$02$ $-76.1 $ $66.9 $ $21.6 $ $29.4 $ $-84.2 $ $-95.8 $ $1$ $0$ $1$
$03$ $-0.5 $ $-0.3 $ $0.1 $ $-0.1 $ $0.4 $ $-0.7 $ $1$ $0$ $2$
$04$ $-3.4 $ $632.0 $ $-226.8 $ $12.7 $ $-610.6 $ $-6.5 $ $2$ $0$ $0$
$05$ $-4.2 $ $3.8 $ $0.2 $ $0.6 $ $-4.1 $ $-4.5 $ $2$ $0$ $1$
$06$ $-0.1 $ $28.0 $ $-12.5 $ $0.7 $ $-22.1 $ $-0.2 $ $3$ $0$ $0$
$07$ $0.0 $ $1.4 $ $-0.6 $ $0.0 $ $-1.0 $ $0.0 $ $4$ $0$ $0$

\[\begin{align} dl &= \sum_{n=8}^{50} T^{t_n} (a_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + b_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \\ db &= \sum_{n=8}^{50} T^{t_n} (c_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t)) + d_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \\ dr &= \sum_{n=8}^{50} T^{t_n} (e_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + f_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \end{align}\tag{2}\]

Tabelle 3: Störterme der Planeten
Störungen durch den Saturn
n $a_n['']$ $b_n['']$ $c_n['']$ $d_n['']$ $e_n['']$ $f_n['']$ $p_n$ $s_n$ $t_n$
$08$ $-0.2 $ $1.4 $ $0.1 $ $-0.2 $ $2.0 $ $0.6 $ $-1$ $-1 $ $0$
$09$ $9.4 $ $8.9 $ $-0.4 $ $-1.4 $ $3.9 $ $-8.3 $ $0 $ $-1 $ $0$
$10$ $5.6 $ $-3.0 $ $-2.0 $ $0.0 $ $-5.4 $ $-5.7 $ $0 $ $-2 $ $0$
$11$ $-4.0 $ $-0.1 $ $0.0 $ $0.0 $ $0.0 $ $5.5 $ $0 $ $-3 $ $0$
$12$ $3.3 $ $-1.6 $ $-0.5 $ $-1.2 $ $-1.6 $ $-3.1 $ $0 $ $-5 $ $0$
$13$ $78.8 $ $-14.5 $ $-0.2 $ $0.2 $ $11.5 $ $64.4 $ $1 $ $-1 $ $0$
$14$ $-2.0 $ $-132.4 $ $-1.7 $ $0.4 $ $28.8 $ $4.3 $ $1 $ $-2 $ $0$
$15$ $-1.1 $ $-0.7 $ $0.0 $ $0.0 $ $0.2 $ $-0.3 $ $1 $ $-2 $ $1$
$16$ $-7.5 $ $-6.8 $ $0.6 $ $-0.9 $ $-0.4 $ $-1.1 $ $1 $ $-3 $ $0$
$17$ $0.7 $ $0.7 $ $0.0 $ $-0.2 $ $0.6 $ $-1.1 $ $1 $ $-4 $ $0$
$18$ $51.5 $ $-26.0 $ $-4.9 $ $-12.4$ $-32.5 $ $-64.4 $ $1 $ $-5 $ $0$
$19$ $-1.2 $ $-2.2 $ $-0.4 $ $0.3 $ $-2.7 $ $1.5 $ $1 $ $-5 $ $1$
$20$ $5.3 $ $-0.7 $ $0.2 $ $1.1 $ $0.7 $ $6.1 $ $2 $ $-1 $ $0$
$21$ $-76.4 $ $-185.1 $ $1.6 $ $0.0 $ $260.2 $ $-108.0$ $2 $ $-2 $ $0$
$22$ $66.7 $ $47.8 $ $0.9 $ $0.3 $ $-51.4 $ $69.8 $ $2 $ $-3 $ $0$
$23$ $0.6 $ $-1.0 $ $0.0 $ $0.0 $ $1.0 $ $0.6 $ $2 $ $-3 $ $1$
$24$ $17.0 $ $1.4 $ $0.0 $ $-0.1 $ $-1.8 $ $9.6 $ $2 $ $-4 $ $0$
$25$ $1066.2$ $-518.3 $ $1.8 $ $-0.3 $ $-1.3 $ $-23.9 $ $2 $ $-5 $ $0$
$26$ $-25.4 $ $-40.3 $ $0.0 $ $0.0 $ $-0.9 $ $0.3 $ $2 $ $-5 $ $1$
$27$ $-0.7 $ $0.5 $ $0.0 $ $0.0 $ $0.0 $ $0.0 $ $2 $ $-5 $ $2$
$28$ $-5.0 $ $-11.5 $ $2.1 $ $-1.0 $ $11.7 $ $-5.4 $ $3 $ $-2 $ $0$
$29$ $16.9 $ $-6.4 $ $-0.5 $ $0.8 $ $13.4 $ $26.9 $ $3 $ $-3 $ $0$
$30$ $7.2 $ $-13.3 $ $0.1 $ $-0.1 $ $20.9 $ $10.5 $ $3 $ $-4 $ $0$
$31$ $68.5 $ $134.3 $ $7.1 $ $15.2 $ $-166.9 $ $86.5 $ $3 $ $-5 $ $0$
$32$ $3.5 $ $-2.7 $ $0.5 $ $-0.4 $ $3.4 $ $4.3 $ $3 $ $-5 $ $1$
$33$ $0.6 $ $1.0 $ $0.0 $ $0.0 $ $-0.9 $ $0.5 $ $3 $ $-6 $ $0$
$34$ $-1.1 $ $1.7 $ $0.0 $ $0.0 $ $-0.4 $ $-0.2 $ $3 $ $-7 $ $0$
$35$ $-0.3 $ $-0.7 $ $0.2 $ $-0.1 $ $0.4 $ $-0.2 $ $4 $ $-2 $ $0$
$36$ $1.1 $ $-0.6 $ $0.1 $ $0.2 $ $0.9 $ $1.2 $ $4 $ $-3 $ $0$
$37$ $3.2 $ $1.7 $ $0.2 $ $0.1 $ $-4.1 $ $5.8 $ $4 $ $-4 $ $0$
$38$ $6.7 $ $8.7 $ $-1.1 $ $1.6 $ $-9.3 $ $8.7 $ $4 $ $-5 $ $0$
$39$ $1.5 $ $-0.3 $ $0.0 $ $0.0 $ $0.6 $ $2.4 $ $4 $ $-6 $ $0$
$40$ $-1.9 $ $2.3 $ $0.0 $ $-0.1 $ $-3.2 $ $-2.7 $ $4 $ $-7 $ $0$
$41$ $0.4 $ $-1.8 $ $0.0 $ $0.0 $ $1.9 $ $0.5 $ $4 $ $-8 $ $0$
$42$ $-0.2 $ $-0.5 $ $0.0 $ $0.0 $ $0.3 $ $-0.1 $ $4 $ $-9 $ $0$
$43$ $-8.6 $ $-6.8 $ $0.0 $ $0.0 $ $-0.4 $ $0.1 $ $4 $ $-10$ $0$
$44$ $-0.5 $ $0.6 $ $0.0 $ $0.0 $ $0.0 $ $0.0 $ $4 $ $-10$ $1$
$45$ $-0.1 $ $1.5 $ $-0.1 $ $0.1 $ $-2.5 $ $-0.8 $ $5 $ $-5 $ $0$
$46$ $0.1 $ $0.8 $ $0.0 $ $0.0 $ $-1.6 $ $0.1 $ $5 $ $-6 $ $0$
$47$ $-0.5 $ $-0.1 $ $0.0 $ $0.0 $ $0.1 $ $-0.8 $ $5 $ $-9 $ $0$
$48$ $2.5 $ $-2.2 $ $0.1 $ $-0.2 $ $2.8 $ $3.1 $ $5 $ $-10$ $0$
Störungen durch den Uranus
n $a_n['']$ $b_n['']$ $c_n['']$ $d_n['']$ $e_n['']$ $f_n['']$ $p_n$ $s_n$ $t_n$
$49$ $0.4 $ $0.9 $ $0.0 $ $0.0 $ $0.0 $ $0.0 $ $1$ $-1$ $0$
$50$ $0.4 $ $0.4 $ $0.0 $ $0.0 $ $-0.4 $ $0.3 $ $1$ $-2$ $0$

\[\begin{align} dl &= \sum_{n=51}^{52} a_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + b_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \\ db &= \sum_{n=51}^{52} c_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + d_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \\ dr &= \sum_{n=51}^{52} e_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + f_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \end{align}\tag{3}\]

Tabelle 4: Störungen durch den Saturn und den Uranus
n $a_n['']$ $b_n['']$ $c_n['']$ $d_n['']$ $e_n['']$ $f_n['']$ $p_n$ $s_n$ $t_n$
$51$ $-0.8 $ $8.5 $ $0.0 $ $0.0 $ $-0.1 $ $0.0 $ $2$ $-6$ $3$
$52$ $0.4 $ $0.5 $ $-0.1 $ $0.0 $ $-0.7 $ $0.5 $ $3$ $-6$ $3$

Heliozentrische Koordinaten

\[\begin{align} l_5 &= M_5 + 14\overset{\circ}{.}00076 + (5025\overset{''}{.}2\cdot T + 0\overset{''}{.}8\cdot T^2 + \text{dl})/3600'' \\ b_5 &= (+ 227\overset{''}{.}3 - 0\overset{''}{.}3\cdot T + \text{db})/3600'' \\ r_5 &= 5.208873\text{ AE} + 4.1 \cdot 10^{-5}\text{ AE} \cdot T + 10^{-5}\text{ AE dr} \end{align}\tag{4}\]