|[[tabellen:merkur_de200|Merkur]]|[[tabellen:venus_de200|Venus]]|[[tabellen:erde_de200|Erde]]|[[tabellen:mars_de200|Mars]]|[[tabellen:jupiter_de200|Jupiter]]|[[tabellen:saturn_de200|Saturn]]|[[tabellen:uranus_de200|Uranus]]|[[tabellen:neptun_de200|Neptun]]| ====== Neptun ====== {{ :neptun_vsop87.png?nolink&100|}} ===== mittlere Anomalien ===== {{tablelayout?rowsHeaderSource=Auto&colwidth="70px,430px"&float=center}} ^ Tabelle 1 || | $M_5 =$ | $20\overset{\circ}{.}299212 + 2880\overset{\circ}{.}0 \cdot T + 154\overset{\circ}{.}760652 \cdot T$ | | $M_6 =$ | $317\overset{\circ}{.}703096 + 1080\overset{\circ}{.}0 \cdot T + 142\overset{\circ}{.}478928 \cdot T$ | | $M_7 =$ | $142\overset{\circ}{.}752888 + 360\overset{\circ}{.}0 \cdot T + 68\overset{\circ}{.}502636 \cdot T$ | | $M_8 =$ | $259\overset{\circ}{.}736616 + 0\overset{\circ}{.}0 \cdot T + 218\overset{\circ}{.}466936 \cdot T$ | ===== Tabellen ===== \[\begin{align} dl &= \sum_{n=1}^{7} T^{t_n} (a_n \cos(p_n \ M_p + s_n \ M_s) + b_n \sin(p_n \ M_p + s_n \ M_s)) \\ db &= \sum_{n=1}^{7} T^{t_n} (c_n \cos(p_n \ M_p + s_n \ M_s) + d_n \sin(p_n \ M_p + s_n \ M_s)) \\ dr &= \sum_{n=1}^{7} T^{t_n} (e_n \cos(p_n \ M_p + s_n \ M_s) + f_n \sin(p_n \ M_p + s_n \ M_s)) \end{align}\tag{1}\] {{tablelayout?rowsHeaderSource=Auto&colwidth="-"&float=center}} ^ Tabelle 2: Keplerterme |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $01$ | $32.3 $ | $3549.5$ | $-6360.5$ | $374.0$ | $-25880.2$ | $235.8 $ | $1$ | $0 $ | $0$ | | $02$ | $31.2 $ | $34.4 $ | $34.9 $ | $29.3 $ | $-251.4 $ | $227.4 $ | $1$ | $0 $ | $1$ | | $03$ | $-1.4 $ | $3.9 $ | $0.0 $ | $-0.9 $ | $-28.6 $ | $-10.1 $ | $1$ | $0 $ | $2$ | | $04$ | $6.1 $ | $68.0 $ | $-54.7 $ | $3.7 $ | $-111.4 $ | $2.0 $ | $2$ | $0 $ | $0$ | | $05$ | $0.8 $ | $-0.2 $ | $-0.2 $ | $0.8 $ | $-2.1 $ | $2.0 $ | $2$ | $0 $ | $1$ | | $06$ | $0.1 $ | $1.0 $ | $-0.8 $ | $0.1 $ | $-0.7 $ | $0.0 $ | $3$ | $0 $ | $0$ | | $07$ | $0.0 $ | $0.0 $ | $0.1 $ | $0.0 $ | $5.5 $ | $-6.9 $ | $1$ | $0 $ | $0$ | \[\begin{align} dl &= \sum_{n=8}^{35} T^{t_n} (a_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + b_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \\ db &= \sum_{n=8}^{35} T^{t_n} (c_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + d_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \\ dr &= \sum_{n=8}^{35} T^{t_n} (e_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + f_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \end{align}\tag{2}\] {{tablelayout?rowsHeaderSource=1&colwidth="-"&float=center}} ^ Tabelle 3: Störterme der Planeten |||||||||| ^ Störungen durch den Jupiter |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $08$ | $0.1 $ | $0.1 $ | $-0.3 $ | $-0.3 $ | $-3.0 $ | $1.8 $ | $0$ | $-1$ | $0$ | | $09$ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $-15.9 $ | $1$ | $0 $ | $0$ | | $10$ | $-17.6$ | $-29.3 $ | $0.0 $ | $0.0 $ | $416.1 $ | $-250.0$ | $1$ | $-1$ | $0$ | | $11$ | $-0.4 $ | $-0.7 $ | $0.0 $ | $0.0 $ | $10.4 $ | $-6.2 $ | $1$ | $-2$ | $0$ | | $12$ | $-0.2 $ | $-0.4 $ | $0.4 $ | $-0.3 $ | $2.4 $ | $-1.4 $ | $2$ | $-1$ | $0$ | ^ Störungen durch den Saturn |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $13$ | $-0.1 $ | $0.0 $ | $-0.1 $ | $-0.5 $ | $0.2 $ | $-1.8 $ | $0$ | $-1$ | $0$ | | $14$ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $-8.3 $ | $-10.4 $ | $1$ | $0 $ | $0$ | | $15$ | $13.6 $ | $-12.7 $ | $0.0 $ | $0.0 $ | $187.5 $ | $201.1 $ | $1$ | $-1$ | $0$ | | $16$ | $0.4 $ | $-0.4 $ | $0.0 $ | $0.0 $ | $4.5 $ | $4.5 $ | $1$ | $-2$ | $0$ | | $17$ | $0.4 $ | $-0.1 $ | $0.2 $ | $0.2 $ | $1.7 $ | $-3.2 $ | $2$ | $-1$ | $0$ | | $18$ | $-0.1 $ | $0.0 $ | $0.0 $ | $0.0 $ | $-0.2 $ | $2.7 $ | $2$ | $-2$ | $0$ | ^ Störungen durch den Uranus |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $19$ | $-0.1 $ | $-0.3 $ | $0.0 $ | $0.0 $ | $-3.6 $ | $0.0 $ | $0$ | $-1$ | $0$ | | $20$ | $-2.2 $ | $-1.6 $ | $0.0 $ | $-0.1 $ | $-116.3 $ | $163.6 $ | $1$ | $-1$ | $0$ | | $21$ | $0.2 $ | $0.1 $ | $0.0 $ | $-0.1 $ | $-1.2 $ | $0.4 $ | $1$ | $-2$ | $0$ | | $22$ | $4.2 $ | $-1.1 $ | $-0.2 $ | $0.1 $ | $-4.4 $ | $-34.6 $ | $2$ | $-1$ | $0$ | | $23$ | $8.6 $ | $-2.9 $ | $0.2 $ | $0.1 $ | $-33.4 $ | $-97.0 $ | $2$ | $-2$ | $0$ | | $24$ | $0.1 $ | $-0.2 $ | $0.0 $ | $0.1 $ | $2.1 $ | $-1.2 $ | $3$ | $-1$ | $0$ | | $25$ | $-4.6 $ | $9.3 $ | $0.1 $ | $0.1 $ | $38.2 $ | $19.8 $ | $3$ | $-2$ | $0$ | | $26$ | $-0.5 $ | $1.7 $ | $0.0 $ | $0.0 $ | $23.5 $ | $7.0 $ | $3$ | $-3$ | $0$ | | $27$ | $0.2 $ | $0.8 $ | $-0.2 $ | $-0.1 $ | $3.3 $ | $-1.5 $ | $4$ | $-2$ | $0$ | | $28$ | $0.9 $ | $1.7 $ | $-0.1 $ | $0.0 $ | $17.9 $ | $-9.1 $ | $4$ | $-3$ | $0$ | | $29$ | $-0.4 $ | $-0.4 $ | $0.0 $ | $0.0 $ | $-6.2 $ | $4.8 $ | $4$ | $-4$ | $0$ | | $30$ | $-1.6 $ | $-0.5 $ | $0.0 $ | $0.0 $ | $-2.2 $ | $7.0 $ | $5$ | $-3$ | $0$ | | $31$ | $-0.4 $ | $-0.1 $ | $0.0 $ | $0.0 $ | $-0.7 $ | $5.5 $ | $5$ | $-4$ | $0$ | | $32$ | $0.2 $ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $-3.5 $ | $5$ | $-5$ | $0$ | | $33$ | $-0.3 $ | $0.2 $ | $0.0 $ | $0.0 $ | $2.1 $ | $2.7 $ | $6$ | $-4$ | $0$ | | $34$ | $0.1 $ | $-0.1 $ | $0.0 $ | $0.0 $ | $-1.4 $ | $-1.4 $ | $6$ | $-5$ | $0$ | | $35$ | $-0.1 $ | $0.1 $ | $0.0 $ | $0.0 $ | $1.4 $ | $0.7 $ | $6$ | $-6$ | $0$ | ===== Heliozentrische Koordinaten ===== \[\begin{align} l_8 &= M_8 + 45\overset{\circ}{.}145656 + (4982\overset{''}{.}8\cdot T - 21\overset{''}{.}3\cdot T^2 + \text{dl})/3600'' \\ b_8 &= (+ 54\overset{''}{.}77 - 0\overset{''}{.}26\cdot T + 0\overset{''}{.}06\cdot T^2 + \text{db})/3600'' \\ r_8 &= 30.072984\text{ AE} + 1.234 \cdot 10^{-3}\text{ AE} \cdot T + 3.0 \cdot 10^{-6}\text{ AE} \cdot T^2 + 1.0 \cdot 10^{-5}\text{ AE dr} \end{align}\tag{3}\]