|[[tabellen:merkur_de200|Merkur]]|[[tabellen:venus_de200|Venus]]|[[tabellen:erde_de200|Erde]]|[[tabellen:mars_de200|Mars]]|[[tabellen:jupiter_de200|Jupiter]]|[[tabellen:saturn_de200|Saturn]]|[[tabellen:uranus_de200|Uranus]]|[[tabellen:neptun_de200|Neptun]]| ====== Jupiter ====== {{ :jupiter_vsop87.png?nolink&100|}} ===== mittlere Anomalien ===== {{tablelayout?rowsHeaderSource=Auto&colwidth="70px,430px"&float=center}} ^ Tabelle 1 || | $M_5 =$ | $20\overset{\circ}{.}351304 + 2880\overset{\circ}{.}0 \cdot T + 154\overset{\circ}{.}906668 \cdot T$ | | $M_6 =$ | $317\overset{\circ}{.}875212 + 1080\overset{\circ}{.}0 \cdot T + 142\overset{\circ}{.}116768 \cdot T$ | | $M_7 =$ | $142\overset{\circ}{.}903332 + 360\overset{\circ}{.}0 \cdot T + 68\overset{\circ}{.}493096 \cdot T$ | ===== Tabellen ===== \[\begin{align} dl &= \sum_{n=1}^{7} T^{t_n} (a_n \cos(p_n \ M_p + s_n \ M_s) + b_n \sin(p_n \ M_p + s_n \ M_s)) \\ db &= \sum_{n=1}^{7} T^{t_n} (c_n \cos(p_n \ M_p + s_n \ M_s) + d_n \sin(p_n \ M_p + s_n \ M_s)) \\ dr &= \sum_{n=1}^{7} T^{t_n} (e_n \cos(p_n \ M_p + s_n \ M_s) + f_n \sin(p_n \ M_p + s_n \ M_s)) \end{align}\tag{1}\] {{tablelayout?rowsHeaderSource=Auto&colwidth="-"&float=center}} ^ Tabelle 2: Keplerterme |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $01$ | $-113.1$ | $19998.6$ | $-4670.7$ | $288.9$ | $-25208.2$ | $-142.2$ | $1$ | $0$ | $0$ | | $02$ | $-76.1 $ | $66.9 $ | $21.6 $ | $29.4 $ | $-84.2 $ | $-95.8 $ | $1$ | $0$ | $1$ | | $03$ | $-0.5 $ | $-0.3 $ | $0.1 $ | $-0.1 $ | $0.4 $ | $-0.7 $ | $1$ | $0$ | $2$ | | $04$ | $-3.4 $ | $632.0 $ | $-226.8 $ | $12.7 $ | $-610.6 $ | $-6.5 $ | $2$ | $0$ | $0$ | | $05$ | $-4.2 $ | $3.8 $ | $0.2 $ | $0.6 $ | $-4.1 $ | $-4.5 $ | $2$ | $0$ | $1$ | | $06$ | $-0.1 $ | $28.0 $ | $-12.5 $ | $0.7 $ | $-22.1 $ | $-0.2 $ | $3$ | $0$ | $0$ | | $07$ | $0.0 $ | $1.4 $ | $-0.6 $ | $0.0 $ | $-1.0 $ | $0.0 $ | $4$ | $0$ | $0$ | \[\begin{align} dl &= \sum_{n=8}^{50} T^{t_n} (a_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + b_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \\ db &= \sum_{n=8}^{50} T^{t_n} (c_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t)) + d_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \\ dr &= \sum_{n=8}^{50} T^{t_n} (e_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + f_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t)) \end{align}\tag{2}\] {{tablelayout?rowsHeaderSource=Auto&colwidth="-"&float=center}} ^ Tabelle 3: Störterme der Planeten |||||||||| ^ Störungen durch den Saturn |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $08$ | $-0.2 $ | $1.4 $ | $0.1 $ | $-0.2 $ | $2.0 $ | $0.6 $ | $-1$ | $-1 $ | $0$ | | $09$ | $9.4 $ | $8.9 $ | $-0.4 $ | $-1.4 $ | $3.9 $ | $-8.3 $ | $0 $ | $-1 $ | $0$ | | $10$ | $5.6 $ | $-3.0 $ | $-2.0 $ | $0.0 $ | $-5.4 $ | $-5.7 $ | $0 $ | $-2 $ | $0$ | | $11$ | $-4.0 $ | $-0.1 $ | $0.0 $ | $0.0 $ | $0.0 $ | $5.5 $ | $0 $ | $-3 $ | $0$ | | $12$ | $3.3 $ | $-1.6 $ | $-0.5 $ | $-1.2 $ | $-1.6 $ | $-3.1 $ | $0 $ | $-5 $ | $0$ | | $13$ | $78.8 $ | $-14.5 $ | $-0.2 $ | $0.2 $ | $11.5 $ | $64.4 $ | $1 $ | $-1 $ | $0$ | | $14$ | $-2.0 $ | $-132.4 $ | $-1.7 $ | $0.4 $ | $28.8 $ | $4.3 $ | $1 $ | $-2 $ | $0$ | | $15$ | $-1.1 $ | $-0.7 $ | $0.0 $ | $0.0 $ | $0.2 $ | $-0.3 $ | $1 $ | $-2 $ | $1$ | | $16$ | $-7.5 $ | $-6.8 $ | $0.6 $ | $-0.9 $ | $-0.4 $ | $-1.1 $ | $1 $ | $-3 $ | $0$ | | $17$ | $0.7 $ | $0.7 $ | $0.0 $ | $-0.2 $ | $0.6 $ | $-1.1 $ | $1 $ | $-4 $ | $0$ | | $18$ | $51.5 $ | $-26.0 $ | $-4.9 $ | $-12.4$ | $-32.5 $ | $-64.4 $ | $1 $ | $-5 $ | $0$ | | $19$ | $-1.2 $ | $-2.2 $ | $-0.4 $ | $0.3 $ | $-2.7 $ | $1.5 $ | $1 $ | $-5 $ | $1$ | | $20$ | $5.3 $ | $-0.7 $ | $0.2 $ | $1.1 $ | $0.7 $ | $6.1 $ | $2 $ | $-1 $ | $0$ | | $21$ | $-76.4 $ | $-185.1 $ | $1.6 $ | $0.0 $ | $260.2 $ | $-108.0$ | $2 $ | $-2 $ | $0$ | | $22$ | $66.7 $ | $47.8 $ | $0.9 $ | $0.3 $ | $-51.4 $ | $69.8 $ | $2 $ | $-3 $ | $0$ | | $23$ | $0.6 $ | $-1.0 $ | $0.0 $ | $0.0 $ | $1.0 $ | $0.6 $ | $2 $ | $-3 $ | $1$ | | $24$ | $17.0 $ | $1.4 $ | $0.0 $ | $-0.1 $ | $-1.8 $ | $9.6 $ | $2 $ | $-4 $ | $0$ | | $25$ | $1066.2$ | $-518.3 $ | $1.8 $ | $-0.3 $ | $-1.3 $ | $-23.9 $ | $2 $ | $-5 $ | $0$ | | $26$ | $-25.4 $ | $-40.3 $ | $0.0 $ | $0.0 $ | $-0.9 $ | $0.3 $ | $2 $ | $-5 $ | $1$ | | $27$ | $-0.7 $ | $0.5 $ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $2 $ | $-5 $ | $2$ | | $28$ | $-5.0 $ | $-11.5 $ | $2.1 $ | $-1.0 $ | $11.7 $ | $-5.4 $ | $3 $ | $-2 $ | $0$ | | $29$ | $16.9 $ | $-6.4 $ | $-0.5 $ | $0.8 $ | $13.4 $ | $26.9 $ | $3 $ | $-3 $ | $0$ | | $30$ | $7.2 $ | $-13.3 $ | $0.1 $ | $-0.1 $ | $20.9 $ | $10.5 $ | $3 $ | $-4 $ | $0$ | | $31$ | $68.5 $ | $134.3 $ | $7.1 $ | $15.2 $ | $-166.9 $ | $86.5 $ | $3 $ | $-5 $ | $0$ | | $32$ | $3.5 $ | $-2.7 $ | $0.5 $ | $-0.4 $ | $3.4 $ | $4.3 $ | $3 $ | $-5 $ | $1$ | | $33$ | $0.6 $ | $1.0 $ | $0.0 $ | $0.0 $ | $-0.9 $ | $0.5 $ | $3 $ | $-6 $ | $0$ | | $34$ | $-1.1 $ | $1.7 $ | $0.0 $ | $0.0 $ | $-0.4 $ | $-0.2 $ | $3 $ | $-7 $ | $0$ | | $35$ | $-0.3 $ | $-0.7 $ | $0.2 $ | $-0.1 $ | $0.4 $ | $-0.2 $ | $4 $ | $-2 $ | $0$ | | $36$ | $1.1 $ | $-0.6 $ | $0.1 $ | $0.2 $ | $0.9 $ | $1.2 $ | $4 $ | $-3 $ | $0$ | | $37$ | $3.2 $ | $1.7 $ | $0.2 $ | $0.1 $ | $-4.1 $ | $5.8 $ | $4 $ | $-4 $ | $0$ | | $38$ | $6.7 $ | $8.7 $ | $-1.1 $ | $1.6 $ | $-9.3 $ | $8.7 $ | $4 $ | $-5 $ | $0$ | | $39$ | $1.5 $ | $-0.3 $ | $0.0 $ | $0.0 $ | $0.6 $ | $2.4 $ | $4 $ | $-6 $ | $0$ | | $40$ | $-1.9 $ | $2.3 $ | $0.0 $ | $-0.1 $ | $-3.2 $ | $-2.7 $ | $4 $ | $-7 $ | $0$ | | $41$ | $0.4 $ | $-1.8 $ | $0.0 $ | $0.0 $ | $1.9 $ | $0.5 $ | $4 $ | $-8 $ | $0$ | | $42$ | $-0.2 $ | $-0.5 $ | $0.0 $ | $0.0 $ | $0.3 $ | $-0.1 $ | $4 $ | $-9 $ | $0$ | | $43$ | $-8.6 $ | $-6.8 $ | $0.0 $ | $0.0 $ | $-0.4 $ | $0.1 $ | $4 $ | $-10$ | $0$ | | $44$ | $-0.5 $ | $0.6 $ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $4 $ | $-10$ | $1$ | | $45$ | $-0.1 $ | $1.5 $ | $-0.1 $ | $0.1 $ | $-2.5 $ | $-0.8 $ | $5 $ | $-5 $ | $0$ | | $46$ | $0.1 $ | $0.8 $ | $0.0 $ | $0.0 $ | $-1.6 $ | $0.1 $ | $5 $ | $-6 $ | $0$ | | $47$ | $-0.5 $ | $-0.1 $ | $0.0 $ | $0.0 $ | $0.1 $ | $-0.8 $ | $5 $ | $-9 $ | $0$ | | $48$ | $2.5 $ | $-2.2 $ | $0.1 $ | $-0.2 $ | $2.8 $ | $3.1 $ | $5 $ | $-10$ | $0$ | ^ Störungen durch den Uranus |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $49$ | $0.4 $ | $0.9 $ | $0.0 $ | $0.0 $ | $0.0 $ | $0.0 $ | $1$ | $-1$ | $0$ | | $50$ | $0.4 $ | $0.4 $ | $0.0 $ | $0.0 $ | $-0.4 $ | $0.3 $ | $1$ | $-2$ | $0$ | \[\begin{align} dl &= \sum_{n=51}^{52} a_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + b_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \\ db &= \sum_{n=51}^{52} c_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + d_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \\ dr &= \sum_{n=51}^{52} e_n \cos(p_n \ M_p + s_n \ M_s + t_n \ M_t) + f_n \sin(p_n \ M_p + s_n \ M_s + t_n \ M_t) \end{align}\tag{3}\] {{tablelayout?rowsHeaderSource=Auto&colwidth="-"&float=center}} ^ Tabelle 4: Störungen durch den Saturn und den Uranus |||||||||| ^ n ^ $a_n['']$ ^ $b_n['']$ ^ $c_n['']$ ^ $d_n['']$ ^ $e_n['']$ ^ $f_n['']$ ^ $p_n$ ^ $s_n$ ^ $t_n$ ^ | $51$ | $-0.8 $ | $8.5 $ | $0.0 $ | $0.0 $ | $-0.1 $ | $0.0 $ | $2$ | $-6$ | $3$ | | $52$ | $0.4 $ | $0.5 $ | $-0.1 $ | $0.0 $ | $-0.7 $ | $0.5 $ | $3$ | $-6$ | $3$ | ===== Heliozentrische Koordinaten ===== \[\begin{align} l_5 &= M_5 + 14\overset{\circ}{.}00076 + (5025\overset{''}{.}2\cdot T + 0\overset{''}{.}8\cdot T^2 + \text{dl})/3600'' \\ b_5 &= (+ 227\overset{''}{.}3 - 0\overset{''}{.}3\cdot T + \text{db})/3600'' \\ r_5 &= 5.208873\text{ AE} + 4.1 \cdot 10^{-5}\text{ AE} \cdot T + 10^{-5}\text{ AE dr} \end{align}\tag{4}\]