====== Geozentrische Breite ====== Zur Bestimmung der topozentrischen Koordinaten (griech. $\tau\omicron\pi\omicron\varsigma$ Topos, Ort) eines Himmelkörpers benötigt man die geozentrischen Größen $\beta_0'$ und $\rho$. Dies ist meist nur für erdnahe Objekte wie z.B. den Mond notwendig, da der Mond eine relativ große Horizontalparallaxe von ca. $57'$ hat. **Abb.1** zeigt einen Meridianschnitt durch die Erde. Die Abplattung des Erdkörpers ist zu Anschauungszwecken extrem übertrieben dargestellt. $M$ ist der Erdmittelpunkt, $N$ und $S$ der Nord- bzw. Südpol. Die Verbindung $\overline{EF}$ stellt den Äquator dar, und $\overline{HK}$ ist die Horizontebene eines Beobachters $B$ auf der Erdoberfläche. Die Senkrechte zur Horizontebene in $B$ schneidet den Äquator im Punkt $P$. {{ :geozentrische_breite.png |Meridianschnitt durch den Erdkörper}} Winkel $\beta_0 = \angle FPB$ = geografische Breite des Beobachters in Grad \\ Winkel $\beta_0' =\angle FMB$ = geozentrische Breite des Beobachters in Grad \\ Abstand $\rho = \overline{MB}$ = geozentrischer Abstand des Beobachters vom Erdmittelpunkt in $km$ \\ $R_E$ = Äquatorradius der Erde, $R_E = 6378.14\;km$, siehe [[wichtige_konstanten#entfernungen_und_massen|Wichtige Konstanten]] Die Verbindung $\overline{BB'}$ ist parallel zur Richtung $\overline{NS}$, und die geografische Breite $\beta_0$ taucht als Winkel $\beta_0 = \angle B'BH$ wiederum auf. ==== Berechnung von $\beta_0'$ und $\rho$ ==== Zur Umrechnung von geozentrischen äquatorialen Koordinaten in die topozentrischen äquatorialen Koordinaten müssen $\beta_0'$ und $\rho$ berechnet werden. Dies kann man mit folgenden Näherungsformeln erreichen: (Siehe => [[:literaturhinweise#books_mont2|O.Montenbruck, Grundlagen der Ephemeridenrechnung]]) \[\tag{1}\label{1} \begin{align} \beta_0' &\approx \beta_0- 0\overset{\circ}{.}1924\cdot \sin(2\beta_0) \\ \rho &\approx R_E - 21.38\cdot \sin^2(\beta_0) \end{align} \] Am Äquator und am Pol ist die Abweichung der geozentrischen Breite $\beta_0'$ von der geografischen Breite $\beta_0$ gleich $0$. Die größte Abweichung erhält man für $\beta_0 = 45^\circ$ mit etwa $0\overset{\circ}{.}192425 = 0^\circ 11' 32\overset{''}{.}7$. {{ :geozentrische_breite_abweichung.png?800 |Differenz geografische Breite – geozentrische Breite}} Nach [[:literaturhinweise#books_meeus|Jean Meeus]] kann man die Größen $\beta_0'$ und $\rho$ auch mit den folgenden Näherungsformeln ermitteln. Zu beachten sind die Korrekturterme in Bogensekunden. $$ \beta_0' \approx \beta_0 - 692\overset{''}{.}73\cdot \sin(2\cdot\beta_0) - 1\overset{''}{.}6\cdot \sin(4\cdot\beta_0) $$ und $\rho$ in Einheiten des [[:wichtige_konstanten#entfernungen_und_massen|Äquatorradius]] $R_E$ \[ \begin{align} \rho \approx\big{[}( & 0.9983271 \\ +&0.0016764\cdot \cos(2\cdot\beta_0) \\ -&0.0000035\cdot \cos(4\cdot\beta_0)\big{]}\cdot\ R_E \end{align} \] Der geozentrische Abstand $\rho$ bezieht sich auf **Meereshöhe**, topografische Unebenheiten werden hier vernachlässigt. Es sei darauf hingewiesen, dass die Bezeichnungen für die geografische Länge und Breite in der Literatur nicht einheitlich sind. Normalerweise werden $\lambda_0$ für die Länge und $\beta_0$ für die Breite verwendet. Manchmal sieht man die Bezeichnungen $\lambda$ für die Länge und $\varphi$ für die Breite. ==== Die Größen $\varrho\sin\beta_{0}'$ und $\varrho\cos\beta_{0}'$ ==== Bei J. Meeus werden die Werte $\varrho$ mit dem Sinus bzw. dem Cosinus von $\beta_{0}'$ zu einer Größe zusammen gefasst berechnet. Dabei ist * $\varrho$ = geozentrischer Abstand eines Beobachters auf der Erdoberfläche, in Einheiten des Erdradius $R_E$. * $\beta_{0}'$ = geozentrische Breite des Beobachters. Diese Größen $\varrho\sin\beta_{0}'$ bzw. $\varrho\cos\beta_{0}'$ werden für die Berechnung der topozentrischen Koordinaten für die Korrektur der Parallaxe benötigt, sowie auch bei der Berechnung von Finsternissen oder Bedeckungen. In den [[:literaturhinweise#books_meeus|Astronomical Algorithms]] wird der nachstehende Algorithmus für ihre Berechnung angegeben. Durch die Abplattung des Erdkörpers ändert sich die Breitenangabe ein wenig, es ist anstatt der geografischen Breite $\beta_{0}$ die geozentrische Breite $\beta_{0}'$ zu verwenden. Ausgehend vom [[:wichtige_konstanten#entfernungen_und_massen|Äquatorradius der Erde]] mit $$ R_E = 6378.14\,\textrm{km}$$ und der Abplattung $f$ der Erde mit $$ f = \frac{R_E - R_P}{R_E} = \frac{1}{298.257} \approx 0.0033528132$$ erhält man den Polradius der Erde durch $$ R_{P} = R_{E}\cdot(1 - f) = 6356.755\,\textrm{km}$$ Für einen Ort auf Meereshöhe kann man dann aus der geografischen Breite $\beta_{0}$ die geozentrische Breite $\beta_{0}'$ ermitteln durch $$\beta_{0}' = \arctan\left( \frac{R_P^2}{R_E^2}\cdot \tan\beta_{0}\right)$$ Befindet sich der Beobachter auf der Höhe $H$ (in Meter) über dem Meeresspiegel, lassen sich die Größen $\varrho\sin\beta_{0}'$ und $\varrho\cos\beta_{0}'$ wie folgt berechnen: \[\begin{align} \tan u &= \frac{R_P}{R_E}\cdot \tan\beta_{0}\quad\textsf{und damit}\\\\ \varrho\sin\beta_{0}' &= \frac{R_P}{R_E}\cdot\sin u + \frac{H}{6378140}\cdot\sin\beta_{0}\\\\ \varrho\cos\beta_{0}' &= \cos u + \frac{H}{6378140}\cdot\cos\beta_{0}\\ \end{align}\] Dabei sind die [[:mathematische_grundlagen#trig_ident|Identitäten der Sinus- bzw. Tangensfunktion]] von Nutzen. Die Größe $\varrho\sin\beta_{0}'$ ist in nördlichen Breiten positiv und in südlichen Breiten negativ, während der Wert von $\varrho\cos\beta_{0}'$ immer positiv ist. Wie man aus den Formeln erkennen kann, hat die geografische Länge $\lambda_{0}$ keinen Einfluss auf die Berechnung, sondern nur die geografische Breite $\beta_{0}$. ==== Beispiel ==== {{:beispiel_calculator.png?nolink| }} **Man berechne die Werte von** $\beta_{0}',\,\varrho\sin\beta_{0}'$ **und** $\varrho\cos\beta_{0}'$ **für das Paranal Observatorium in Chile mit** $\beta_{0} = -24^{\circ}37'38''$ **und** $H = 2635\,\textrm{m}$. ---- Das Paranal Observatorium liegt auf der Südhalbkugel, eine Umrechnung liefert die dezimale geografische Breite mit \(\begin{align} \beta_{0} &= -\left(24^{\circ} + \frac{37'}{60\tfrac{'}{\circ}} + \frac{38''}{3600\tfrac{''}{\circ}}\right)\\ &= -24\overset{\circ}{.}627222 \end{align}\) Damit gelangt man zu \(\begin{align} \tan u &= \frac{6356.755}{6378.14}\cdot \tan(-24.627222)\\ &= -0.456873593789 \end{align}\) und damit \(\begin{align} u &= \arctan (-0.456873593789)\\ &= -24\overset{\circ}{.}554409 \end{align}\) Mit den oben angegeben Beziehungen erhält man nun \(\begin{align} \varrho \sin\beta_{0}' &= \frac{6356.755}{6378.14}\cdot \sin(-24.554409)\\ &+ \frac{2635}{6378140}\cdot \cos(-24.627222)\\ &= -0.414336 \end{align}\) \(\begin{align} \varrho \cos\beta_{0}' &= \cos(-24.554409)\\ &+ \frac{2635}{6378140}\cdot \cos(-24.627222)\\ &= 0.909943 \end{align}\) Die geozentrische Breite $\beta_{0}'$ ist nun gegeben durch \(\begin{align} \beta_{0}' &= \textrm{arctan2}(-0.414336, 0.909943)\\ &= -24\overset{\circ}{.}4818056 \end{align}\) Läge der Beobachtungsort auf **Meereshöhe**, wäre die geozentrische Breite gegeben durch {{tablelayout?rowsHeaderSource=Auto&colwidth="430px"}} | \(\begin{align} \beta_{0}' &= \arctan\left( \frac{6356.755^2}{6378.14^2}\cdot \tan(-24.627222)\right)\\ &=-24\overset{\circ}{.}481756 \end{align}\) | Mit der Näherungformel $\eqref{1}$ erhält man für $\beta_{0}'$ auf Meereshöhe \(\begin{align} \beta_{0}' &= -24\overset{\circ}{.}627222\\ &- 0.1924\cdot\sin\big(2\cdot (-24.627222)\big)\\ &= -24\overset{\circ}{.}481457 \end{align}\)